Power Plant OTEC; PLTN; PLTP



Tugas MKE
Studi Pustaka Mesin Konversi Energi
OTEC
Konversi energi termal lautan (bahasa Inggris: ocean thermal energy conversion) adalah metode untuk menghasilkan energi listrik menggunakan perbedaan temperatur yang berada di antara laut dalam dan perairan dekat permukaan untuk menjalankan mesin kalor. Seperti pada umumnya mesin kalor, efisiensi dan energi terbesar dihasilkan oleh perbedaan temperatur yang paling besar. Perbedaan temperatur antara laut dalam dan perairan permukaan umumnya semakin besar jika semakin dekat ke ekuator. Pada awalnya, tantangan perancangan OTEC adalah untuk menghasilkan energi yang sebesar-besarnya secara efisien dengan perbedaan temperatur yang sekecil-kecilnya.
Permukaan laut dipanaskan secara terus menerus dengan bantuan sinar matahari, dan lautan menutupi hampir 70% area permukaan bumi. Perbedaan temperatur ini menyimpan banyak energi matahari yang berpotensial bagi umat manusia untuk dipergunakan. Jika hal ini bisa dilakukan dengan cost effective dan dalam skala yang besar, OTEC mampu menyediakan sumber energi terbaharukan yang diperlukan untuk menutupi berbagai masalah energi.
Konsep mesin kalor adalah umum pada termodinamika, dan banyak energi yang berada di sekitar manusia dihasilkan oleh konsep ini. Mesin kalor adalah alat termodinamika yang diletakkan di antara reservoir temperatur tinggi dan reservoir temperatur rendah. Ketika kalor mengalir dari temperatur tinggi ke temperatur rendah, alat tersebut mengubah sebagian kalor menjadi kerja. Prinsip ini digunakan pada mesin uap dan mesin pembakaran dalam, sedangkan pada alat pendingin, konsep tersebut dibalik. Dibandingkan dengan menggunakan energi hasil pembakaran bahan bakar, energi yang dihasilkan OTEC didapat dengan memanfaatkan perbedaan temperatur lautan disebabkan oleh pemanasan oleh matahari.
Siklus kalor yang sesuai dengan OTEC adalah siklus Rankine, menggunakan turbin bertekanan rendah. Sistem dapat berupa siklus tertutup ataupun terbuka. Siklus tertutup menggunakan cairan khusus yang umumnya bekerja sebagai refrigeran, misalnya ammonia. Siklus terbuka menggunakan air yang dipanaskan sebagai cairan yang bekerja di dalam siklusnya.
Prinsip Kerja
Beberapa pakar energi berpendapat bahwa OTEC akan menjadi teknologi penghasil listrik yang sangat kompetitif di masa depan. OTEC dapat memproduksi listrik hingga skala gigawatt, dan dengan penggabungan dengan sistem elektrolisis, akan menghasilkan hidrogen cukup untuk menggantikan konsumsi bahan bakar fosil dunia. Tetapi, mengatur biaya adalah yang tersulit. Seluruh fasilitas OTEC membutuhkan peralatan khusus dan pipa panjang berdiameter besar yang ditenggelamkan hingga beberapa kilometer jauhnya dari permukaan untuk mendapatkan air dingin. Dan itu membutuhkan banyak biaya.
Berdasarkan lokasi
  • Daratan
  • Mengapung
  • Perairan dangkal
Berdasarkan sistem siklus yang digunakan
  • Siklus terbuka
  • Siklus tertutup
  • Siklus hybrid
Air laut yang dingin merupakan bagian utama dari tiga tipe siklus tersebut. Untuk mengoperasikannya, air laut yang dingin harus dipompa ke permukaan. Cara lainnya adalah dengan desalinasi air laut dekat dasar laut yang akan menyebabkan air laut itu mengalir ke atas karena perbedaan densitas.
Siklus tertutup

Description: E:\Kuliah\MKE\OTEC\Konversi_energi_termal_lautan_files\magnify-clip.png
Diagram siklus tertutup OTEC
Siklus tertutup menggunakan fluida dengan titik didih rendah, misalnya amonia, untuk memutar turbin dan menghasilkan listrik. Air hangat di permukaan dipompa ke penukar panas di mana fluida bertitik didih rendah dididihkan. Fluida yang mengalami perubahan wujud menjadi uap akan mengalami peningkatan tekanan. Uap bertekanan tinggi ini lalu dialirkan ke turbin untuk menghasilkan listrik. Uap tersebut lalu didinginkan kembali dengan air dingin dari laut dalam dan mengembun. Lalu fluida kembali melakukan siklusnya.


Siklus terbuka
Siklus terbuka menggunakan air laut untuk menghasilkan listrik. Air laut yang hangat dimasukkan ke dalam tangki bertekanan rendah sehingga menguap. Uap ini dugunakan untuk menggerakkan turbin. Air laut yang menguap meninggalkan mineral laut seperti garam dan lain sebagainya sehingga bermanfaat untuk menghasilkan air tawar untuk diminum dan irigasi.
Siklus hybrid
Siklus hybrid menggunakan keunggulan sistem siklus terbuka dan tertutup. Siklus hybrid menggunakan air laut yang dilekatakkan di tangki bertekanan rendah untuk dijaikan uap. Lalu uap tersebut digunakan untuk menguapkan fluida bertitik didih rendah (amonia atau yang lainnya). Uap air laut tersebut lalu dikondensasikan untuk menghasilkan air tawar desalinasi.

Komponen Penyusun System
Komponen Penyusun system ini hampir sama dengan system lain yang menggunakan ssisklus Rankine.
Vaporizer yaitu penukar panas dari air laut panas ke fluida kerja yang digunakan.
Turbine adalah komponen yang digunakan untuk mentransfer daya dari fluida kerja menuju generator.
Condenser berguna untuk menukar panas dari Fluida kerja menuju air aut yang dingin.
Pompa digunakan sebagai penaik tekanan fluida kerja.
Pipa penyalur utama air laut panas dan air laut dingin digunakan sebagai penyalur air laut menuju kondensor dan evaporator.
Gambar Perangkat System






Reaktor Nuklir
 
Reaktor nuklir adalah suatu tempat atau perangkat yang digunakan untuk membuat, mengatur, dan menjaga kesinambungan reaksi nuklir berantai pada laju yang tetap. Berbeda dengan bom nuklir, yang reaksi berantainya terjadi pada orde pecahan detik dan tidak terkontrol.
Reaktor nuklir digunakan untuk banyak tujuan. Saat ini, reaktor nuklir paling banyak digunakan untuk membangkitkan listrik. Reaktor penelitian digunakan untuk pembuatan radioisotop (isotop radioaktif) dan untuk penelitian. Awalnya, reaktor nuklir pertama digunakan untuk memproduksi plutonium sebagai bahan senjata nuklir.
Saat ini, semua reaktor nuklir komersial berbasis pada reaksi fisi nuklir, dan sering dipertimbangkan masalah risiko keselamatannya. Sebaliknya, beberapa kalangan menyatakan bahwa pembangkit listrik tenaga nuklir merupakan cara yang aman dan bebas polusi untuk membangkitkan listrik. Daya fusi merupakan teknologi ekperimental yang berbasi pada reaksi fusi nuklir. Ada beberapa piranti lain untuk mengendalikan reaksi nuklir, termasuk di dalamnya pembangkit thermoelektrik radioisotop dan baterai atom, yang membangkitkan panas dan daya dengan cara memanfaatkan peluruhan radioaktif pasif, seperti halnya Farnsworth-Hirsch fusor, di mana reaksi fusi nuklir terkendali digunakan untuk menghasilkan radiasi neutron.
Reak­tor nuk­lir mem­pro­duk­si dan me­ngen­da­li­kan pe­le­pas­an ener­gi da­ri pe­me­cah­an atom be­be­ra­pa unsur se­per­ti urani­um dan plu­to­nium. Da­lam re­ak­tor Pem­bang­kit Lis­trik Te­na­ga Nuk­lir (PLTN), ener­gi dile­pas­kan da­ri re­ak­si fi­si (pe­me­cah­an) ber­an­tai atom ba­han ba­kar dan pa­nas yang di­ha­sil­kan di­pa­kai un­tuk mem­pro­duk­si uap. 

Uap ini­lah yang di­gu­na­kan un­tuk meng­ge­rak­kan tur­bin un­tuk mem­pro­duk­si lis­trik. Je­nis pem­bang­kit lain­nya ju­ga meng­gu­na­kan uap, na­mun PLTN ti­dak me­la­ku­kan pem­ba­kar­an ba­han ba­kar fo­sil yang bi­sa me­le­pas­kan emi­si gas ru­mah ka­ca.

PLTN

Pembangkit Listrik Tenaga Nuklir atau PLTN adalah sebuah pembangkit daya thermal yang menggunakan satu atau beberapa reaktor nuklir sebagai sumber panasnya. Prinsip kerja sebuah PLTN hampir sama dengan sebuah Pembangkilt Listrik Tenaga Uap, menggunakan uap bertekanan tinggi untuk memutar turbin. Putaran turbin inlah yang diubah menjadi energi listrik. Perbedaannya ialah sumber panas yang digunakan untuk menghasilkan panas. Sebuah PLTN menggunakan Uranium sebagai sumber panasnya. Reaksi pembelahan (fisi) inti Uranium menghasilkan energi panas yang sangat besar.

Daya sebuah PLTN berkisar antara 40 Mwe sampai mencapai 2000 MWe, dan untuk PLTN yang dibangun pada tahun 2005 mempunyai sebaran daya dari 600 MWe sampai 1200 MWe. Sampai tahun 2006 terdapat 443 PLTN yang beroperasi di dunia, yang secara keseluruhan menghasilkan daya sekitar 1/6 dari energi listrik dunia.


Prinsip kerja PLTN sebenarnya mirip dengan pembangkit listrik lainnya, misalnya Pembangkit Listrik Tenaga Uap (PLTU). Uap bertekanan tinggi pada PLTU digunakan untuk memutar turbin. Tenaga gerak putar turbin ini kemudian diubah menjadi tenaga listrik dalam sebuah generator. (siklus Rankine)
Perbedaan PLTN dengan pembangkit lain terletak pada bahan bakar yang digunakan untuk menghasilkan uap, yaitu Uranium. Reaksi pembelahan (fisi) inti Uranium menghasilkan tenaga panas (termal) dalam jumlah yang sangat besar serta membebaskan 2 sampai 3 buah neutron


Komponen Penyusun Sistem tenaga Reaktor Nuklir

Ba­han ba­kar

Bia­sa­nya ba­han ba­kar be­ru­pa bu­tir ura­ni­um ok­si­da (UO2) yang da­lam ta­bung se­hing­ga ter­ben­tuk ba­tang ba­han ba­kar. Ba­tang ini di­atur se­de­mi­ki­an ru­pa di da­lam in­ti re­ak­tor.

Mo­de­ra­tor

Ma­te­ri­al ini mem­per­lam­bat pe­le­pas­an net­ron fi­si yang me­nye­bab­kan le­bih ba­nyak re­ak­si fi­si. Bia­sa­nya yang di­pa­kai ada­lah air, na­mun bi­sa ju­ga air be­rat atau gra­fit.

Tang­kai ken­da­li

Ba­gi­an ini di­buat da­ri ma­te­ri­al yang me­nye­rap net­ron, se­per­ti cad­mi­um, haf­ni­um atau bo­ron. Ma­te­ri­al ini bi­sa di­ma­suk­kan atau ter­le­pas da­ri in­ti un­tuk me­ngon­trol ke­ce­pat­an re­ak­si hing­ga meng­hen­ti­kan re­ak­si. Se­lain itu ada sis­tem pe­ma­dam­an ke­dua de­ngan me­nam­bah­kan pe­nye­rap net­ron yang lain, bia­sa­nya ter­da­pat da­lam sis­tem pen­di­ngin uta­ma.

Pen­di­ngin

Be­ru­pa ca­ir­an atau gas yang meng­alir se­pan­jang in­ti re­ak­tor dan me­min­dah­kan pa­nas da­ri dalam ke­lu­ar. Da­lam re­ak­tor yang me­ma­kai air bia­sa, fung­si mo­de­ra­tor bia­sa­nya me­rang­kap seba­gai pen­di­ngin.

Be­ja­na ber­te­kan­an

Bia­sa­nya be­ru­pa be­ja­na ba­ja ku­at dan di­da­lam­nya ada in­ti re­ak­tor dan mo­de­ra­tor/pen­di­ngin. Na­mun bi­sa ju­ga be­ru­pa se­rang­kai­an ta­bung yang me­nam­pung ba­han ba­kar dan me­nya­lur­kan ca­ir­an pen­di­ngin ke se­pan­jang mo­de­ra­tor.

Ge­ne­ra­tor uap

Ini ada­lah ba­gi­an da­ri sis­tem pen­di­ngin­an di ma­na pa­nas da­ri re­ak­tor di­gu­na­kan un­tuk mem­bu­at uap da­ri tur­bin.

Con­tain­ment (pe­na­han)

Ya­i­tu struk­tur di se­ki­tar in­ti re­ak­tor yang di­ran­cang un­tuk me­lin­dungi­nya da­ri gang­gu­an lu­ar dan me­lin­dungi ba­gi­an lu­ar da­ri efek ra­dia­si ji­ka ada ke­sa­lah­an. Ba­gi­an ini di­buat da­ri struk­tur be­ton dan ba­ja de­ngan te­bal men­ca­pai 1 m.

Ke­ba­nyak­an re­ak­tor per­lu di­ma­ti­kan sa­at peng­isi­an ba­han ba­kar. Da­lam hal ini peng­isi­an ba­han ba­kar di­la­ku­kan pa­da in­ter­val 1-2 ta­hun dan se­pe­rem­pat atau ti­ga­pe­rem­pat pa­sang ba­han bakar di­gan­ti de­ngan yang ba­ru. Pa­da ti­pe CAN­DU dan RBMK yang me­mi­liki ta­bung ber­te­kan­an (bu­kan be­ja­na te­kan yang me­nu­tup in­ti re­ak­tor), peng­isi­an ulang ba­han ba­kar bi­sa di­la­ku­kan saat ge­ne­ra­tor be­ker­ja de­ngan me­mu­tus ta­bung ber­te­kan­an itu.

Pa­da re­ak­tor de­ngan mo­de­ra­tor air be­rat atau gra­fit, re­ak­tor bi­sa be­ker­ja se­per­ti bia­sa bah­kan sa­at pe­nga­ya­an ura­ni­um. Ura­ni­um alam ma­sih me­mi­liki kom­po­si­si yang sa­ma de­ngan sa­at ditam­bang (me­mi­liki 0,7% iso­top U-235 dan 99,2% U-238). Ura­ni­um ini me­mi­liki iso­top U-235 yang cen­de­rung te­rus mem­be­lah.

Iso­top ini ke­mu­di­an di­ka­ya­kan hing­ga 3,5-5%. Pa­da pro­ses pe­nga­ya­an se­per­ti ini mo­de­ra­tor bi­sa be­ru­pa air bia­sa dan di­se­but de­ngan re­ak­tor air ri­ngan. Air ini bi­sa me­nye­rap net­ron de­ngan ba­ik, na­mun tak se­efek­tif meng­gu­na­kan air be­rat atau gra­fit. Da­lam ber­ba­gai ka­sus yang lang­ka, ba­ngun­an in­ti re­ak­tor bi­sa ru­sak se­hing­ga me­nye­bab­kan ma­sa­lah pa­da sis­tem pen­di­ngin­an atau mo­de­ra­tor. Aki­bat­nya, re­ak­si fi­si yang ter­ja­di bi­sa tak ter­ken­da­li dan me­nye­bab­kan le­dak­an atau ter­se­bar­nya asap ra­dio­ak­tif ke ma­na-ma­na.

Gambar Reaktor Nuklir





















Pembangkit Listrik Tenaga Panas Bumi (PLTPB)


Energi panas bumi, adalah energi panas yang tersimpan dalam batuan di bawah permukaan bumi dan fluida yang terkandung didalamnya. Energi panas bumi telah dimanfaatkan untuk pembangkit listrik di Italy sejak tahun 1913 dan di New Zealand sejak tahun 1958. Pemanfaatan energi panas bumi untuk sektor non‐listrik (direct use) telah berlangsung di Iceland sekitar 70 tahun. Meningkatnya kebutuhan akan energi serta meningkatnya harga minyak, khususnya pada tahun 1973 dan 1979, telah memacu negara‐negara lain, termasuk Amerika Serikat, untuk mengurangi ketergantungan mereka pada minyak dengan cara memanfaatkan energi panas bumi. Saat ini energi panas bumi telah dimanfaatkan untuk pembangkit listrik di 24 Negara, termasuk Indonesia. Disamping itu fluida panas bumi juga dimanfaatkan untuk sektor non‐listrik di 72 negara, antara lain untuk pemanasan ruangan, pemanasan air, pemanasan rumah kaca, pengeringan hasil produk pertanian, pemanasan tanah, pengeringan kayu, kertas dll.


Sistim panas bumi di Indonesia umumnya merupakan sistim hidrothermal yang mempunyai temperatur tinggi (>225oC), hanya beberapa diantaranya yang mempunyai temperatur sedang (150-225oC). Pengalaman dari lapangan-lapangan panas bumi yang telah dikembangkan di dunia maupun di Indonesia menunjukkan bahwa sistem panas bumi bertemperatur tinggi dan sedang, sangat potensial bila diusahakan untuk pembangkit listrik. Potensi sumber daya panas bumi Indonesia sangat besar, yaitu sekitar 27500 MWe , sekitar 30-40% potensi panas bumi dunia.


Prinsip Kerja PLTP


Pembangkit Listrik Tenaga Panasbumi (PLTP) pada prinsipnya sama seperti Pembangkit Listrik Tenaga Uap (PLTU), hanya pada PLTU uap dibuat di permukaan menggunakan boiler, sedangkan pada PLTP uap berasal dari reservoir panasbumi. Apabila fluida di kepala sumur berupa fasa uap, maka uap tersebut dapat dialirkan langsung ke turbin, dan kemudian turbin akan mengubah energi panas bumi menjadi energi gerak yang akan memutar generator sehingga dihasilkan energi listrik.





Apabila fluida panas bumi keluar dari kepala sumur sebagai campuran fluida dua fasa (fasa uap dan fasa cair) maka terlebih dahulu dilakukan proses pemisahan pada fluida. Hal ini dimungkinkan dengan melewatkan fluida ke dalam separator, sehingga fasa uap akan terpisahkan dari fasa cairnya. Fraksi uap yang dihasilkan dari separator inilah yang kemudian dialirkan ke turbin.







Apabila sumberdaya panasbumi mempunyai temperatur sedang, fluida panas bumi masih dapat dimanfaatkan untuk pembangkit listrik dengan menggunakan pembangkit listrik siklus binari (binary plant). Dalam siklus pembangkit ini, fluida sekunder ((isobutane, isopentane or ammonia) dipanasi oleh fluida panasbumi melalui mesin penukar kalor atau heat exchanger.

Fluida sekunder menguap pada temperatur lebih rendah dari temperatur titik didih air pada tekanan yang sama. Fluida sekunder mengalir ke turbin dan setelah dimanfaatkan dikondensasikan sebelum dipanaskan kembali oleh fluida panas bumi. Siklus tertutup dimana fluida panas bumi tidak diambil masanya, tetapi hanya panasnya saja yang diekstraksi oleh fluida kedua, sementara fluida panas bumi diinjeksikan kembali kedalam reservoir.





Masih ada beberapa sistem pembangkitan listrik dari fluida panas bumi lainnya yang telah diterapkan di lapangan, diantaranya: Single Flash Steam, Double Flash Steam, Multi Flash Steam, , Combined Cycle, Hybrid/fossil–geothermal conversion
system.

Perangkat yang digunakan
Heat Exchanger Berguna sebagai penukar panas antara panas bumi dan fluida kerja
Turbine sebagai transfer daya dari fluida kerja menuju Generator
Condenser Penukar panas dari fluida kerja menuju ingkungan dengan tujuan merubah fasa dari campuran gas dan cair menjadi murni cairan.
Pompa berfungsi sebagai penaik tekanan.
Gambar sudah di tampilkan diatas.





Komentar